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1 Introduction

An interesting recent development has been the application of AdS/CFT to the nonlinear

hydrodynamics of strongly coupled field theories [1] (some early applications include [2–8];

see also the review [9] for further references, as well as the review [10] for earlier work

focussed on the linearized regime.) One system of interest, relevant to various phenomena

including superconductivity, graphene, and the quantum Hall effect, is that of a charged

2+1 dimensional conformal fluid evolving under the influence of external electromagnetic

fields. In a previous paper [11] we applied the method of [1] to calculate a subset of linear

and nonlinear transport coefficients in fluids with an Einstein-Maxwell gravity dual. In

this paper we extend these results to a complete calculation of all the transport coefficients

in this sector up to second order in the hydrodynamic expansion. The main generalization

involves allowing the external electromagnetic field to vary in space and time.1 Along the

way, we study the role of S-duality in these systems and discover a surprising cancelation

in the linear order transport coefficients.

1A natural further generalization is to allow the fluid to live on a curved geometry, as in [4]. This

generalization is discussed in section 2 to first order.
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It was noted in [12] that there is a natural SL(2, Z) action on the space of 2+1 di-

mensional conformal field theories with a U(1) global symmetry. Generically this action

is a duality: it maps solutions of one CFT to solutions of some other inequivalent CFT.

However, in some cases it makes sense to consider CFTs invariant under the S element

of SL(2, Z). Such CFTs arise naturally in the AdS/CFT context: if a CFT has a gravity

dual that can be consistently truncated to Einstein-Maxwell gravity, then the boundary

S operation is mapped to electric-magnetic duality in the bulk, which is a symmetry of

the Einstein-Maxwell equations of motion. The implications for AdS/CFT linear trans-

port properties were discussed extensively in [13, 14]. In section 2, we will be interested

in studying the significance of this invariance for generic S-invariant CFT hydrodynam-

ics. We show how S invariance tightly constrains the hydrodynamics of a generic CFT,

so that in general, the complete fluid equations of motion at leading order in derivatives

are completely specified by the equation of state together with one non-negative real func-

tion and one real number. This is a general statement about S-invariant conformal fluids,

independent of the AdS/CFT correspondence.

In sections 3 and 4, we use the dyonic black brane solution of 3+1 dimensional Einstein-

Maxwell gravity to construct a gravity dual for hydrodynamic fluctuations. Following [1]

we proceed order by order in a derivative expansion to arrive at a solution in local but

not global thermodynamic equilibrium. The starting point is a configuration in global

equilibrium, with free parameters corresponding to energy and charge densities along with

the value of a constant background magnetic field. We then allow these parameters to

vary slowly in spacetime, and also allow for a slowly varying electric field. Associated with

these varying parameters are numerous transport coefficients expressing the flow of current

and stress-energy. By solving the Einstein-Maxwell equations in the boundary derivative

expansion, we determine all these transport coefficients up to second order in derivatives.

As in our previous work we consider the case of magnetohydrodynamics, such that the

external magnetic field is nonzero in any Lorentz frame; that is, we assume B2 > ~E2 at

all points in the fluid. Besides the length scale associated with the temperature, lT ∼ 1
T

,

there is then a second length scale set by the magnetic field, lB ∼ 1√
B

, where B denotes

the value of the magnetic field in a Lorentz frame with ~E = 0. The fluid degrees of freedom

are assumed to be slowly varying over both of these length scales. Our approach is to be

distinguished from that of [14, 15] (see also [16, 17]), which is more appropriate for weak

B fields (and is also restricted to the linear regime).

One result of our calculations is that we discover an interesting cancelation in the

linear transport coefficients for the fluid dual to Einstein-Maxwell gravity. These transport

coefficients are naturally grouped into two sectors according to their behavior under the S

operation: the energy diffusion and electric conductivity sector, which was studied in [14,

15]; and a sector describing charge diffusion and the response to variations in the magnetic

field. In each of these sectors we find that half of the transport coefficients vanish when

written in the natural S-covariant basis. This is surprising, inasmuch as we demonstrate

that nonvanishing values are consistent with all the symmetries and with positive divergence

of the entropy current. The vanishing results therefore seem particular to fluids with
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an Einstein-Maxwell dual description. Of course, it would be especially interesting to

find a real world fluid with such vanishing — or at least small — transport coefficients,

as such a fluid would provide a very promising system for making experimental contact

with AdS/CFT.

2 Hydrodynamics of a general S-invariant conformal fluid

We are interested in studying the hydrodynamics of a 2+1 dimensional CFT with a con-

served current coupled to slowly varying external electric and magnetic fields. We consider

the case where the external field is locally magnetic; that is we impose a constraint that

| ~E| < |B| everywhere so that there will always exist a boosted frame at each point where
~E = 0. Our fluid dynamical variables are taken to be the energy density, T 00 = ǫ, and the

charge density, J0 = ρ. In particular, we do not take the fluid velocity to be an indepen-

dent degree of freedom; the reason for this, as discussed extensively in [11], is that in the

presence of a background magnetic field momentum is not a conserved quantity. At large

B and in the fluid dynamical derivative expansion, the fluid momentum density is fixed

by the equations of motion in terms of ǫ and ρ, and so introducing additional degrees of

freedom to represent it would be a needless complication.

The equations of motion for our fluid are the conservation equations ∂νT
µν = FµνJν

and ∂µJµ = 0. We solve the equations by working in the neighborhood of an arbitrary

point in the fluid, and choose a Lorentz frame such that ~E = 0 at that point. Away from

the chosen point the electric field will be nonzero but small, in the sense that it will scale

like a derivative in our fluid dynamical derivative expansion; in particular, its magnitude

will be of the same hydrodynamic order as derivatives of ǫ, ρ and B. In this frame it is

natural to write out the equations of motion as

∂µT µ0 = −EiJ
i ,

∂µT µi = −ρEi + BǫijJj ,

∂0ρ = −∂iJ
i ,

∂0B = ǫij∂iEj , (2.1)

with F0i = Ei, Fij = Bǫij, and in the last line we have written out the Bianchi identity. In

this equation we have introduced a notation that we will use throughout, where lowercase

roman indices refer to the two spatial directions in our fluid. In terms of the quantities

in (2.1), the SL(2, Z) duality of [12] corresponds to the following S operation:2

ρ → B

B → −ρ

Ei → −ǫijJ
j

J i → −ǫijEj , (2.2)

2In the appendix we show how the SL(2, Z) of a boundary CFT can be holographically related to the

SL(2, Z) of electric-magnetic duality in the bulk for CFTs with a gravity dual.
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as well as the T operation:

ρ → ρ + B

B → B

Ei → Ei

J i → J i − ǫijEj . (2.3)

The S operation can be viewed as particle-vortex duality, in that it interchanges a unit of

electric charge with a unit of magnetic flux. The S and T operations are symmetries of the

equations of motion (2.1) provided that the stress tensor is invariant. Repeated application

of S and T generates the full SL(2, Z), acting as
(

ρ

B

)

→
(

a b

c d

)(

ρ

B

)

,

(

Ei

−ǫijJ
j

)

→
(

a b

c d

)(

Ei

−ǫijJ
j

)

, (2.4)

with ad − bc = 1.

In general, S and T map solutions of one CFT to solutions of a different CFT. The

equations of fluid dynamics are specified not only by (2.1) but also by the constitutive

relations which express the stress tensor and charge current in terms of the fluid variables.

These relations may or may not be invariant under SL(2, Z). However, it is not hard to

see that in theories for which the stress tensor is invariant under S, the full equations of

motion of our hydrodynamic theory will be invariant as well. In fact, as noted in [12], and

as we will see in section 3, conformal theories with a gravity dual will be S invariant in

sectors dual to Einstein-Maxwell gravity. It is these CFTs which we will be considering in

the remainder of this paper.

Unlike S, the T of SL(2, Z) will not appear as a symmetry of our equations of motion.

To appreciate the distinction, note that the action of T is the same as the redefinition

of charge and current that results from adding a Chern-Simons term to the action of our

CFT. If we think of theories as being specified by their action, then the T operation relates

distinct theories. By setting the coefficient of the Chern-Simons term to some fixed value

(we will take it to be zero), there is then no constraint on the constitutive relations that

they be invariant under T . By contrast, the S operation relates the theory to itself, and

we will demand invariance under S. From the bulk gravity point of view, T corresponds

to shifting the θ-angle, while S corresponds to electric-magnetic duality [12].

To specify the equations of motion for a general S invariant fluid we need to ex-

press the stress tensor in terms of an S invariant derivative expansions. It turns out that

the combinations

M±
ij = ρδij ∓ BǫijN

±
i = Ei ∓ Ji , (2.5)

will be particularly useful. These quantities transform under S as:

M±
ij → ±ǫikM

±
kjN

±
i → ±ǫijN

±
j . (2.6)

These objects are even under parity, and odd under charge conjugation C. Time reversal

interchanges the + and − representations. Because the currents and electric field both
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vanish in the hydrodynamic limit, M±
ij is zeroth order in our derivative expansion while

N±
i is order one.

There are only two zeroth order S-invariant scalars in this theory, the energy density

ǫ in the energy-electric field sector and the quantity

M =
1

2
M+

ij M−
ji = ρ2 + B2 , (2.7)

in the charge-magnetic field sector.

2.1 Constitutive equations and transport coefficients

To completely specify our fluid dynamics we just need to write down constitutive relations

for T µν and Jµ in terms of fluid variables ǫ and ρ, and the background fields B and Ei.
3

This is carried out order by order in a derivative expansion, where ǫ, ρ, B, and Ei are all

allowed to slowly vary. At zeroth order in derivatives we just have the equilibrium fluid,

and we can assume without loss of generality that Ei = 0 at lowest order in derivatives by

locally boosting to an appropriate frame. The equilibrium fluid is thus labeled by (ǫ, ρ,B).

Given our assumption that B is nonzero, we do not actually need to provide a con-

stitutive relation for the current. This follows since we can solve for J i in the second line

of (2.1) as

Ji = − 1

B
ǫij

(

∂µT µj + ρEj
)

. (2.8)

The current is thus completely determined in terms of other quantities. Note that the

choice to solve for Ji is not invariant under S; the S-dual choice would be to solve for Ei,

which is allowed provided that ρ is nonzero. The point is that although our fluid equations

of motion are assumed to be S-invariant, we are choosing to solve them in a non-manifestly

S-invariant manner. This asymmetry under S-duality is built in from the assumption that

B and Ei are regarded as fixed external fields, while ρ and J i are regarded as dynamical

variables, even though these two sets of quantities are exchanged under S-duality.

The form of the stress tensor is constrained by symmetries. We demand invariance

under charge conjugation, under which M±
ij and N±

i are both odd. Also, we require

invariance under spatial SO(2) rotations and parity; this requires that i type indices match

up on both sides of any equation. Note that we do not demand invariance under time

reversal since, by definition, dissipative fluid dynamics has a preferred direction of time.

Finally, we impose the scale invariance of our theory, which implies tracelessness of the

stress tensor, and hence fixes T ij = 1
2ǫδij at zeroth order in derivatives. Because T 00 = ǫ

at all orders in the derivative expansion, this leaves only T 0i and the symmetric traceless

part of T ij to be determined.

3We take the fluid variables to be ǫ and ρ rather than their thermodynamic conjugates T and µ. This is

appropriate, since it is only the former that have an unambiguous meaning away from thermal equilibrium.

For small deviations from equilibrium one can of course go back and forth between the two using the

equation of state.
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At first order in the derivative expansion we can define the following four vectors

sharing the same symmetries as T 0i:

x1
i = M+

ij N−
j

x2
i = M−

ij N+
j

x3
i = M+

ij ∂kM
−
jk

x4
i = M−

ij ∂kM
+
jk . (2.9)

The symmetries then fix T 0i to be of the form

T 0i = c1x
1
i + c2x

2
i + c3x

3
i + c4x

4
i , (2.10)

where ca = ca(ǫ,M) are, by definition, transport coefficients. We can use dimensional

analysis to express each of the coefficient functions ca as a power of ǫ times an arbitrary

function of the dimensionless combination ǫ4/M3. In the formula (2.10) T 0i appears to be

a function of the current J i; however, it is implicit that J i at first order is reexpressed in

terms of first derivatives of (ǫ, ρ) through (2.8). Hence T 0i is really a function of the fluid

variables (ǫ, ρ) and the background fields (B,Ei). There are no contributions to T ij at this

order in derivatives.

2.2 Entropy current

Studying fluctuations of the dyonic black brane solution will lead to specific functions

ca, along with their analogs at second order. But before turning to that computation it is

useful to consider the general constraints on these functions. A set of fluid equations is only

physically permissible if it is possible to define an entropy current Sµ whose divergence is

positive semi-definite, ∂µSµ ≥ 0. This expresses the condition that locally entropy should

be produced and not destroyed. By definition we have S0 = s, where s = s(ǫ,M) is

the entropy density of the equilibrium fluid. To establish consistency we then need find

the spatial components Si compatible with positive divergence; existence of these spatial

components will be seen to imply constraints on the transport coefficients ca. As with T 0i,

the symmetries constrain Si at first order in derivatives to be of the form

Si = α1x
1
i + α2x

2
i + α3x

3
i + α4x

4
i , (2.11)

with αa = αa(ǫ,M) constrained by dimensional analysis.

Using the equations of motion, we can compute ∂µSµ in terms of second order quantities

and squares of first order quantities. Positivity of the divergence for arbitrary configurations

requires that all the second order linear contributions vanish, and that the remaining terms

form a sum of squares with positive coefficients.

Computing the terms linear in second order quantities we find

[∂µSµ]linear =
(

α1 − ∂ǫsc1 − ∂Ms
)

M+
ij ∂iN

−
j +

(

α2 − ∂ǫsc2 + ∂Ms
)

M−
ij ∂iN

+
j

+
(

α3 + α4 − ∂ǫsc3 − ∂ǫsc4

)

M+
ij ∂i∂kM

−
jk . (2.12)

– 6 –
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Setting this to zero fixes three combinations of the four coefficients αa. Using the

parameter χ to label the family of solutions, we write

α1 = ∂ǫsc1 + ∂Ms

α2 = ∂ǫsc2 − ∂Ms

α3 = ∂ǫsc3 + χ

α4 = ∂ǫsc4 − χ . (2.13)

With this result in hand, we can proceed to compute the terms quadratic in first order

quantities. After considerable algebra we find

∂µSµ =

[

−c1∂
2
ǫ s − ∂M∂ǫs −

∂ǫs

4M

]

x1
i x

1
i

+

[

−c2∂
2
ǫ s + ∂M∂ǫs +

∂ǫs

4M

]

x2
i x

2
i

+
[

c3∂M∂ǫs +
χ

M
+ ∂Mχ

]

x3
i x

3
i

+
[

c4∂M∂ǫs −
χ

M
− ∂Mχ

]

x4
i x

4
i

+
[

−(c1 + c2)∂
2
ǫ s
]

x1
i x

2
i

+

[

−c3∂
2
ǫ s + ∂2

Ms − ∂ǫχ + c1∂M∂ǫs +
∂Ms

M

]

x1
i x

3
i

+
[

−c4∂
2
ǫ s + ∂2

Ms + ∂ǫχ + c1∂M∂ǫs
]

x1
i x

4
i

+
[

−c3∂
2
ǫ s − ∂2

Ms − ∂ǫχ + c2∂M∂ǫs
]

x2
i x

3
i

+

[

−c4∂
2
ǫ s − ∂2

Ms + ∂ǫχ + c2∂M∂ǫs −
∂Ms

M

]

x2
i x

4
i

+ [(c3 + c4)∂M∂ǫs]x
3
i x

4
i . (2.14)

Non-negativity of the divergence of the entropy current now reduces to the condition that

this quadratic form, viewed as a symmetric matrix, have no negative eigenvalues.

We can examine this condition separately in various subspaces. In the x1
i −x2

i we find

the condition

c1 − c2 = − 1

∂2
ǫ s

(

2∂M∂ǫs +
∂ǫs

2M

)

. (2.15)

Next we consider the x3
i − x4

i and (x1
i + x2

i ) − (x3
i + x4

i ) subspaces, which leads to the

two conditions

∂M (Mχ) = −1

2
(c3 − c4)M∂M∂ǫs

∂ǫ(Mχ) =
1

2
∂Ms − 1

2
(c3 − c4)M∂2

ǫ s . (2.16)

Equating mixed partials gives an integrability condition

[

∂2
ǫ s∂M − ∂M∂ǫs∂ǫ

][

M(c3 − c4)
]

= ∂2
Ms . (2.17)
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This equation determines M(c3 − c4) up to the addition of an arbitrary function of the

form f(∂ǫs), which by dimensional analysis takes the form f(∂ǫs) = c/(∂ǫs)
2. Then, (2.15)

fixes Mχ in terms of c3 − c4 up to an additive constant.

Using these results the divergence becomes

∂µSµ = −1

2

[

∂2
ǫ s(c1 + c2)

]

t2 +
1

2

[

∂M∂ǫs(c1+c2)−∂2
ǫ s(c3 + c4)

]

ut− 1

2
[∂M∂ǫs(c3 + c4)]u

2 ,

(2.18)

where we are writing x1
i + x2

i = t and x3
i + x4

i = u. The determinant of the associated

matrix is

− 1

16

(

∂2
ǫ s(c3 + c4) + ∂M∂ǫs(c1 + c2)

)2

. (2.19)

Since this is negative semi-definite we must demand that it actually vanishes, which tells

us that

c3 + c4 = −∂M∂ǫs

∂2
ǫ s

(c1 + c2) . (2.20)

The divergence then finally takes the form:

∂µSµ = −c1 + c2

∂2
ǫ s

(

(∂2
ǫ s)2 + (∂M∂ǫs)

2
)

[

−∂2
ǫ s

x1
i + x2

i

∂M∂ǫs
+ (x3

i + x4
i )

]2

. (2.21)

Since 1
∂2

ǫ s
= −T 2C, where C is the specific heat, we see that ∂2

ǫ s < 0 and hence ∂µSµ ≥ 0

provided that c1 + c2 is non-negative.

Let us summarize the constraints imposed on an acceptable fluid dynamics. c1 + c2 is

allowed to be an arbitrary, non-negative, dimensionally correct, function of (ǫ,M). c1 − c2

is fixed by (2.15); c3 + c4 is fixed by (2.20); and c3 − c4 is fixed by (2.17) up to the addition

of c
M(∂ǫs)2

, for some number c. Altogether then, given an equation of state there is one

free real function and one free real number labeling the space of allowed fluid equations

of motion.

In the above, we considered a fluid living on a flat three dimensional spacetime, but

one might wonder whether there are any additional constraints to be found by putting the

fluid on a curved geometry. It is easy to see that no such additional constraints can arise.

At this order in the derivative expansion, one can simply repeat the previous computation

with indices suitably contracted. The one place where a new constraint would arise is if a

term proportional to the Ricci scalar were to appear in the expression for ∇µSµ. Since the

Ricci scalar is not positive definite, positivity of the divergence would impose the constraint

that its coefficient be zero. However, this coefficient is automatically zero. This can be

seen by considering the special case of a fluid on S2 × R. In this case one can obviously

find static fluid configurations with constant ǫ and ρ, and these configuration will obviously

obey ∇µSµ = 0. But evaluated on such a configuration, all possible terms at second order

in derivatives that can appear in the expression for ∇µSµ vanish, except for the Ricci

scalar. So the fact that ∇µSµ = 0 for such a configuration implies that the coefficient of

the Ricci scalar is zero. We conclude that our fluid equations can be generalized to curved

spacetime with no new constraints being required.

– 8 –
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2.3 Black brane equation of state

In the preceding discussion the equilibrium equation of state of the fluid is left unspecified.

We now consider the equation of state corresponding to the dyonic black brane considered

in this paper. The entropy density is given by s = πa2 where the horizon radius a is given

by the largest real root of

a2 +
ρ2 + B2

a2
− 2ǫ

a
= 0 . (2.22)

If we use dimensional analysis to write

c1 + c2 =
1

a
F
(

a4/M
)

(2.23)

and introduce the numerical constant c, then we find

c1 − c2 =
3(a4 + M)

4aM

c3 + c4 =
(3a4 + M)

3a2(a4 + M)
F
(

a4/M
)

c3 − c4 =
(3a4 + M)

4a2M
+

(3a4 − M)2

a6M
c . (2.24)

Any choice of function F and constant c leads to an acceptable fluid dynamics. As we’ll

see later, gravity picks out one particular choice,

F
(

a4/M
)

=
3

4

(

1 +
a4

M

)

, c = 0 . (2.25)

corresponding to the transport coefficients

c1 =
3(a4 + M)

4aM
c2 = 0

c3 =
3a4 + M

4a2M
c4 = 0 . (2.26)

It is interesting that gravity yields this simple result in which two of the naturally defined

transport coefficients vanish. It would be interesting to know if there is some general reason

for this to be the case since, as emphasized above, all the general consistency requirements

on the fluid equations can be satisfied even when these coefficients are non-vanishing.

3 The gravity dual description

We now turn to our calculation of the transport coefficients for our fluid with an AdS

gravity dual description. As developed in [15, 18], the dyonic black brane solution to 4-

dimensional Einstein-Maxwell gravity provides a dual description of a finite temperature

2+1 dimensional CFT at nonzero charge density and under the influence of an external

magnetic field. In this section, we first review the duality dictionary in the case of global

thermal equilibrium, and then proceed to develop a derivative expansion that will allow us

to study the duality in the hydrodynamic regime.
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3.1 The dyonic black brane

The 4-dimensional bulk Einstein-Maxwell action is given by

S =
2

κ2
4

∫

d4x
√−g

[

1

4
R − 1

4
FMNFMN − 3

2L2

]

. (3.1)

We work in units where L = 1. This action has equations of motion

WMN ≡ RMN + 3gMN − 2FMP F P
N +

1

2
gMNFPQFPQ = 0

Y N ≡ ∇MFMN = 0 . (3.2)

The dyonic black brane solution to (3.2) is given by

ds2 = 2dvdr − U(r)dv2 + r2dxidxi

F =
ρ

r2
dr ∧ dv + Bdx1 ∧ dx2 (3.3)

where U(r) is the function

U(r) = r2 +
ρ2 + B2

r2
− 2ǫ

r
, (3.4)

and ρ, ǫ and B are unspecified constants which will later be identified with the charge

and energy density of our dual fluid as well as an external magnetic field applied to the

fluid. The black brane has a singularity at r = 0 which is shielded by a horizon at

r = a, defined by the largest real root of U(a) = 0. We are using Eddington-Finkelstein

coordinates (r, v, x1, x2), which are smooth across this future horizon.4 These coordinates

do not cover the past horizon, and we correspondingly do not demand smoothness there.

This is physically sensible in that we do not expect solutions of dissipative fluid dynamics

to be well behaved when extended arbitrarily far back in time.

The Hawking temperature of the brane is

T =
3a

4π
− B2 + ρ2

4πa3
. (3.5)

ǫ and ρ are restricted to values such that T ≥ 0. The chemical potential can be read off

from the Euclidean black hole solution in terms of the the asymptotic value of Av. Recall

that to obtain a smooth gauge field on the Euclidean section we must choose a gauge such

that Av vanishes at the horizon (no such requirement exists for the Lorentzian solution due

to the different topology). This fixes the asymptotic value of Av and gives µ = ρ
a
.

Some further conventions: Latin indices M,N, . . . run over all four spacetime coordi-

nates, while Greek indices µ, ν, . . . run over the three coordinates (v, x1, x2). Since v plays

the role of time on the boundary, we will sometimes use v = x0. The boundary theory will

always see a Minkowski metric, γ̃µνdxµdxν = −(dx0)2 + dxidxi. Indices on the boundary

stress tensor and currents are raised and lowered with this metric.

4These are related to Schwarzschild type coordinates via v = t + r∗(r) with dr∗
dr

= 1
U(r)

. This gives

ds2 = −U(r)dt2 + dr2

U(r)
+ r2dxidxi.
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3.2 Stress tensor and current

The action (3.1) should be supplemented with the boundary terms [19, 20]

Sbndy = − 1

κ2
4

∫

∂M

d3x
√−γ θ − 2

κ2
4

∫

∂M

d3x
√−γ . (3.6)

Here γ is the boundary metric and θ = γµνθµν , where θµν = −1
2(∇µnν + ∇νnµ) is the

extrinsic curvature of the boundary, defined in terms of the outward pointing unit normal

vector n.

The conformal boundary metric is defined as γ̃µν = limr→∞
1
r2 γµν . Also, the boundary

gauge field is defined as limr→∞ Aµ, in a gauge where nMAM = 0. The boundary stress

tensor and current are then defined as

δS =
1

κ2
4

∫

∂M

√

−γ̃ (2JµδAµ + T µνδγ̃µν) . (3.7)

Explicitly [20],

Jµ = r2FµrT µν =
r5

2
[θµν − θγµν − 2γµν ] . (3.8)

Implicit in (3.8) is the large r limit, as well as a projection of T µν parallel to the boundary

(since the orthogonal component does not appear in (3.7).)

Electromagnetic gauge invariance implies current conservation,

∇µJµ = 0 . (3.9)

Invariance under diffeomorphisms generated by vector fields tangent to the boundary yields

the (non) conservation equation

∇νT
µν = FµνJν . (3.10)

Tracelessness of the stress tensor follows from invariance under diffeomorphisms shifting

the radial location of the boundary

γ̃µνT µν = 0 . (3.11)

In particular, the latter invariance follows from the absence of logarithmic divergences

in the bulk action, the presence of which would necessitate adding a non-diff invariant

counterterm [19].

Applied to the solution (3.3) we find

T µν = diag
(

ǫ, 1
2ǫ, 1

2ǫ
)

Jµ = (ρ, 0, 0) , (3.12)

which demonstrates that ǫ and ρ are in fact energy and charge densities.
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3.3 Gravitational derivative expansion

The dyonic black brane supergravity solution of (3.3) represents a fluid in global thermo-

dynamic equilibrium. We would like to modify this solution in order to account for long

wavelength hydrodynamic fluctuations,5 so we begin by considering an approximate solu-

tion which looks locally like the dyonic brane. We start with (3.3) but allow ǫ, B and ρ to

be slowly varying functions of the spacetime coordinates xµ:

[

ds(0)
]2

= 2dvdr − U(r, xµ)dv2 + r2dxidxi

F (0) =
ρ(xµ)

r2
dr ∧ dv + B(xµ)dx1 ∧ dx2 (3.13)

where U(r, xµ) is given by

U(r, xµ) = r2 +
ρ2(xµ) + B2(xµ)

r2
− 2ǫ(xµ)

r
. (3.14)

This approximate solution represents a good starting point for two reasons. First, in small

neighborhoods, it approximates the true dyonic black brane. In the second place, this

approximate solution approaches an exact solution in the limit of vanishing derivatives

along the spacetime coordinates. If derivatives are small, then we ought to approach an

exact solution to the supergravity equations of motion by solving these equations order by

order in a derivative expansion, and this is exactly how we proceed.

But first, we deal with some technicalities in defining the gauge potential corresponding

to the field strength in the second line of (3.13) . We might consider an A(0) that can be

written in the form

A(0) = −ρ(xµ)

r
dt +

1

2
B(xµ)ǫijx

i ∧ dxj + AE
α (xµ)dxα, (3.15)

where AE
α (xµ) is purely electric, and Ei = ∂vA

E
i − ∂iA

E
v . For constant ρ,B, ǫ and AE

α this

form of A(0) reproduces the field strength of (3.13). In addition, this form is generic about

any point since shifts in the origin correspond to constant shifts in A
(0)
α .

But there is also a problem with the expression (3.13), because generically derivatives

of B(xµ) do not correspond to derivatives of the magnetic field F
(0)
12 . If we want to match up

derivatives then we need to correct A(0) in (3.13) order by order in a derivative expansion.

For example in order to match ∂F and ∂2F we need to add terms of the form
[

1

4
∂yBy2 − 1

12
∂2

yBy3

]

dx −
[

1

4
∂xBx2 − 1

12
∂2

xBx3

]

dy . (3.16)

We note that it is possible to add new terms to this expression order by order in the

derivative expansion to match up our definition of B in A(0) with the magnetic field and

its derivatives in the boundary.

We add corrections to (3.13) order by order in a derivative expansion in order to find

a solution to the equations (3.2). As explained in [1], the equations of motion can be

5Although we use the word “fluctuations”, the disturbances are allowed to have large amplitude so long

as their wavelength is large. This is the sense in which we are doing nonlinear hydrodynamics.
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solved “tubewise” by working in small neighborhoods near a given xµ location, say xµ = 0.

Each of these tubes then corresponds to a small neighborhood of local thermodynamic

equilibrium in the boundary fluid. We expand the metric and gauge fields as

g = g(0)(ǫ, ρ,B,E) + εg(1)(ǫ, ρ,B,E) + ε2g(2)(ǫ, ρ,B,E) + O(ε3)

A = A(0)(ǫ, ρ,B,E) + εA(1)(ǫ, ρ,B,E) + ε2A(2)(ǫ, ρ,B,E) + O(ε3) , (3.17)

where g(0) and A(0) represent the lowest order solution corresponding to the dyonic black

brane with variable ρ, ǫ, B, and E. The derivatives of these parameters (and E itself)

act as sources for the higher order derivative corrections. We have also introduced in

this equation a parameter ε which formally labels the order of a term in our derivative

expansion.

(3.2) does not admit solutions starting with arbitrary values of B, ρ, ǫ and E. Instead,

we find that these parameters must satisfy constraint equations, which we then interpret as

the fluid equations of motion in the boundary theory. In general, we expect these equations

to be modified order by order in a derivative expansion. To allow for this, we express the

energy and charge densities by an expansion,

ǫ = ǫ(0)(εxµ) + εǫ(1)(εxµ) + · · · , ρ = ρ(0)(εxµ) + ερ(1)(εxµ) + · · · . (3.18)

B and E however are specified by Dirichlet boundary conditions, so we wouldn’t expect

for B or E to be corrected order by order in our derivative expansion. Nevertheless, we

will formally write B and E in a similar fashion, with an eye towards S-duality,

B = B(0)(εxµ) + εB(1)(εxµ) + · · · , E = εE(1)(εxµ) + ε2E(2)(εxµ) + · · · . (3.19)

In the standard formulation where E and B are specified by Dirichlet boundary conditions

En+1 = Bn = 0 for n > 0. Note that this expansion in powers of ε is slightly different than

the labeling used in section 2 where we just counted the number of derivatives acting on ǫ

and ρ. If we are working in a small neighborhood around xµ = 0, then it is convenient to

set ǫn>0(0) = ρn>0(0) = En(0) = 0.

The zeroth order solution preserves SO(2) rotational symmetry, and this can be used

to classify the corrections to the metric and gauge fields. We choose a gauge for the metric

and gauge field

Ar = 0 , grr = 0 , g(0)µν
g(n>0)
µν = 0 , (3.20)

and decompose the fluctuations according to their SO(2) representations:

A(n) = A(n)
v dv + A

(n)
i dxi , (3.21)

with A
(n)
v an SO(2) scalar and A

(n)
i an SO(2) vector. For the metric we write

(ds2)(n) =
k(n)

r2
dv2 − 2h(n)dvdr + r2h(n)dxidxi + 2j

(n)
i dvdxi + r2σ

(n)
ij dxidxj , (3.22)

In this expansion, k(n) and h(n) are SO(2) scalars; j
(n)
i is an SO(2) vector; and σ

(n)
ij is an

SO(2) symmetric traceless tensor.
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We impose large r boundary conditions on the n > 0 components given by:

A(n)
v ∼ 1

r2
, A

(n)
i ∼ 1

r
k(n) ∼ r0 h(n) ∼ 1

r4 , j
(n)
i ∼ 1

r
, σ

(n)
ij ∼ 1

r3 . (3.23)

These conditions follow from a combination of the asymptotic AdS boundary conditions

along with the freedom to redefine coordinates as well as the zeroth order solution, as in [2].

In addition to these large r boundary conditions, we must also demand that our solution

be smooth across the future horizon at r = a. For linear perturbations, this condition is

equivalent to demanding the presence of purely ingoing modes at the future horizon [21].

If we now plug the expansions in (3.17), (3.21) , (3.22), into (3.2) we arrive at the

dynamical equations for the metric and gauge field corrections. The nth order metric

coefficients are determined by the components of the Einstein equations W
(n)
MN = 0 with

M,N 6= v. These equations can be organized as

W (n)
rr = − 1

r4
∂r(r

4∂rh
(n)) − S

(n)
(h) = 0

r2(UWrr)
(n) − W

(n)
ii = ∂r

(

−2

r
k(n)

)

+ ∂r

(

∂r(r
2U (0))h(n)

)

− 8

r2
B2h(n) + 4ρ(0)∂rA

(n)
v − S

(n)
(k) = 0

W
(n)
ri =

1

2
r∂r

(

1

r2
∂r(rj

(n)
i )

)

+
2

r2
[ρ(0)δij − Bǫij]∂rA

(n)
j − S

(n)
i = 0

W
(n)
ij − 1

2
δijW

(n)
kk = ∂r

(

−1

2
r2U (0)∂rσ

(n)
ij

)

− S
(n)
ij = 0 (3.24)

The source terms denoted by S are constructed from the solution at order n − 1, and so

are assumed to be known. Similarly, two components of the Maxwell equations yield

Y (n)v =
1

r2
∂r

(

−r2∂rA
(n)
v − 2ρ(0)h(n)

)

− V (n) = 0

Y (n)i =
1

r2
∂r

(

U (0)∂rA
(n)
i +

1

r2
[ρ(0)δij + Bǫij]j

(n)
j

)

− V
(n)
i = 0 (3.25)

with source terms V . These equations are sufficient to determine the metric and gauge field

corrections for arbitrary ρ, ǫ, B, and E, and are referred to as the dynamical equations.

The remaining Y r and WvM are interpreted as constraint equations and will be shown to

be equivalent to the nonlinear magnetohydrodynamic equations of motion up to second

order in derivatives.

Once the metric and gauge field corrections are determined using (3.24) and (3.25),

the current and stress tensor can be found using (a large r limit is implicit):

Jv = ρ

J i = −r2
∑

n

∂rA
(n)
i − Ei

T vv = ǫ

T vi = −3

4
r
∑

n

j
(n)
i

T ij =
1

2
ǫ +

3

4
r3
∑

n

σ
(n)
ij (3.26)
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4 Solving the equations

4.1 Zeroth order solution

At zeroth order we use the dyonic black brane solution with ǫ = ǫ(0), ρ = ρ(0), B = B(0),

and E = 0. By construction, this is a solution to the Einstein-Maxwell equations. The

current and stress tensor are

Jµ = (ρ, 0, 0)

T µν = diag

(

ǫ,
1

2
ǫ,

1

2
ǫ

)

. (4.1)

4.2 First order solution

At first order we write

ǫ(xµ) = ǫ(0) + εxµ∂µǫ(0)(0)

ρ(xµ) = ρ(0) + εxµ∂µρ(0)(0)

B(0)(xµ) = B(0) + εxµ∂µB(0)(0)

AE (0)
α (xµ) = εxµ∂µAE (0)

α (0) . (4.2)

The first order sources are built out of ∂µǫ(0), ∂µρ(0), ∂µB(0) and E(1), and read

S
(1)
(h)

= S
(1)
(k)

= S
(1)
i = S

(1)
ij = V (1) = 0 ,

V
(1)
i =

∂iρ
(0) + ǫij∂jB

(0)

r4
=

∂jM
−
ij

r4
(4.3)

All fluctuations with no sources are set to zero by the boundary conditions. The non-zero

fluctuations which must be determined are ∂rA
(1)
i and j

(1)
i .

Integrating Y (1)i = 0 gives

U (0)∂rA
(1)
i +

M−
ij j

(1)
j

r2
+

∂jM
−
ij

r
= −c

(1)
i , (4.4)

where c
(1)
i is a constant of integration, independent of r.

Proceeding as in [11] it is easy to obtain

j
(1)
i (r) = −U (0)(r)M+

ij

∫ r

α
(1)
j

dr′
(

β
(1)
j +

4

r′
c
(1)
j +

2

r′2
∂jM

−
ij

U (0)(r′)2

)

∂rA
(1)
i (r) = −

M−
ij j1

j (r) + r∂jM
−
ij + r2c

(1)
i

r2U (0)(r)
. (4.5)

We fix the integration constants by imposing (3.23) and demanding that the fluctuations

be smooth across the future horizon at r = a. This fixes α
(1)
j = ∞ and

β
(1)
i = − 4

a(0)

(

1 +
U ′(0)(a(0))

a(0)U ′′(0)(a(0))

)

c
(1)
i − 2

a(0)2

(

1 +
2U ′(0)(a(0))

a(0)U ′′(0)(a(0))

)

∂jM
−
ij . (4.6)
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With this choice of integration constants we find that j
(1)
i has the large r behavior

j
(1)
i (r) =

M+
ij β

(1)
j

3r
+ O

(

1

r2

)

. (4.7)

To find the current J i we need

r2F ir (1) = −M−
ij j

(1)
j − E

(1)
i − ∂iρ

(0)

r
− U (0)∂rA

(1)
i . (4.8)

At large r, we use this expression and (3.26) to find

J i = c
(1)
i − E

(1)
i , (4.9)

which tells us that

c
(1)
i = N−

i . (4.10)

The stress tensor can be found at this order using (3.26)

T vi = −1

4
M+

ij β
(1)
j

[T ij ]st = 0 . (4.11)

where the symmetric traceless part of a matrix is defined according to

[Mij ]
st =

1

2
(Mij + Mji − δijMkk) . (4.12)

If we now combine (4.6) and (4.11) with our definition of the transport coeffi-

cients (2.10) , T 0i = c1x
1
i + c2x

2
i + c3x

3
i + c4x

4
i , then it is easy to derive (2.26)

c1 =
3(a4 + M)

4aM
c2 = 0

c3 =
3a4 + M

4a2M
c4 = 0 . (4.13)

As advertised, we find the surprising result that two of the transport coefficients vanish.

We interpret the remaining WvM and Y r equations as constraints on the allowed values

of the fluid variables. If we use our solutions for j
(1)
i and ∂rA

(1)
i found in equations (4.4)

and (4.5), then it can be shown that these equations reduce to

∂µJµ = 0 , ∂νT
µν = FµνJν (4.14)

at order ε in our derivative expansion. In particular these constraint equations take the form

∂vρ
(0) = ∂vǫ

(0) = 0

J i = − 1

2B
ǫij∂jǫ −

ρ

B
ǫijEj

c
(1)
i = − 1

B(0)
ǫij

[

1

2
∂jǫ

(0) + M−
jkE

(1)
k

]

. (4.15)
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4.3 Second order solution

ǫ, B, ρ and AE
α (xµ) are now given by expanding to order ε2,

ǫ(xµ) = ǫ(0)(0) + εxµ∂µǫ(0)(0) +
1

2
ε2xµxν∂µ∂νǫ(0)(0) + ε2xµ∂µǫ(1)(0)

ρ(xµ) = ρ(0)(0) + εxµ∂µρ(0)(0) +
1

2
ε2xµxν∂µ∂νρ(0)(0) + ε2xµ∂µρ(1)(0)

B(xµ) = B(0)(0) + εxµ∂µB(0)(0) +
1

2
ε2xµxν∂µ∂νB(0)(0) + ε2xµ∂µB(1)(0)

AE
α (xµ) = εxµ∂µAE (0)

α (0) +
1

2
ε2xµxν∂µ∂νA

E (0)
α (0) + ε2xµ∂µAE (1)

α (0) . (4.16)

The second order sources work out to be

S
(2)
(h) =

2

r2
(∂rA

(1)
i )2

S
(2)
(k) = 2U (0)(∂rA

(1)
i )2 +

4

r2
ρ(0)∂rA

(1)
i j

(1)
i − 4

r2
Bǫij∂iA

(1)
j

+
2

r
∂ij

(1)
i + ∂r∂ij

(1)
i − 2

r
j
(1)
i ∂rj

(1)
i − 1

2
(∂rj

(1)
i )2

S
(2)
i = 0

S
(2)
ij = −∂r[∂ij

(1)
j ]st − 2

r
[j

(1)
i ∂rj

(1)
j ]st +

2

r2
[j

(1)
i j

(1)
j ]st +

1

2
[∂rj

(1)
i ∂rj

(1)
j ]st

+

[(

2U (0)∂rA
(1)
i +

4

r
∂iρ

(0) + 4Ei +
4

r2
Bǫikj

(1)
k

)

∂rA
(1)
j

]st

V (2) =
1

r2
∂r∂iA

(1)
i − 1

r2
∂r(j

(1)
i ∂rA

(1)
i )

V
(2)
i = 0 . (4.17)

It is not hard to work out the solutions to these equations following [11].

h(2)(r) = −2

∫ r

∞

dr′

r′4

∫ r′

∞
dr′′

(

r′′∂rA
(1)
i (r′′)

)2

∂rA
(2)
v (r) =

1

r2

∫ r

∞
dr′r′2X1(r

′)

k(2)(r) =
1

2
r

∫ r

∞
dr′X2(r

′)

j
(2)
i (r) = −U (0)(r)M+

ij

∫ r

∞
dr′

β
(2)
j + 4

r′
c
(2)
j

U (0)(r′)2

σ
(2)
ij (r) = −2

∫ r

∞

dr′

r′2U (0)(r′)

∫ r′

a(0)

dr′′S
(2)
ij (r′′), (4.18)

where

X1(r) = −2ρ

r2
∂rh

(2)

X2(r) = ∂r

(

∂r(r
2U (0))h(2)

)

− 8

r2
B2h(2) + 4ρ(0)∂rA

(2)
v − S

(2)
(k) . (4.19)
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The scalar sector does not contribute to the currents and we will not study the scalar sector

solutions in any greater detail.

In the vector sector, ∂rA
(2)
i is determined by the analog of (4.4),

U (0)∂rA
(2)
i +

1

r2
M−

ij j
(2)
j = −c

(2)
i . (4.20)

Imposing regularity at the horizon tells us that

β
(2)
i = − 4

a(0)

(

1 +
U ′(0)(a(0))

a(0)U ′′(0)(a(0))

)

c
(2)
i . (4.21)

β
(2)
i and c

(2)
i now contribute to the stress tensor and current precisely as in (4.9) and (4.11).

Also, the stress tensor conservation equation now fixes6

c
(2)
i =

1

B(0)
ǫij

[

−1

2
∂jǫ

(1) + M+
jkE

(2)
k

]

= J
(2)
i + E

(2)
i = N

(2)−
i . (4.22)

The vector components of the stress tensor and current at this order take the same form

as at first order.

In the tensor sector, the solution in (4.18) is straightforward, and leads to

[T ij ]st =
1

2

∫ ∞

a(0)

dr S
(2)
ij (r) . (4.23)

In order to write down the transport coefficients at this order we want to make use

of the symmetries to organize the stress tensor according to the S-duality representations.

We use the operators K±
ij = M±

ikM±
kj with eigenvalue −1 under S. Below we list all of the

terms which appear in the symmetric traceless part of the stress tensor at second order

in derivatives, there are of course other terms consistent with the symmetries, but we list

only the ones which appear in the fluid from our gravity dual.

[

T ij
]st

= bNN
−−

[

K+
ikN

−
k N−

j

]st

+ bNN
+−

[

N+
i N−

j

]st

+bNM
−−

[

K+
ikN

−
k ∂lM

−
jl

]st

+ bNM
−+

[

N−
i ∂lM

+
jl

]st

+ bNM
+−

[

N+
i ∂lM

−
jl

]st

+bMM
−−

[

K+
ik∂mM−

km∂lM
−
jl

]st

+ bMM
−+

[

∂mM+
im∂lM

−
jl

]st

+bN
[

M+
ik∂iN

−
j

]st

+ bM
[

M+
ik∂k∂lM

−
jl

]st

. (4.24)

To read off the expressions for the transport coefficients we use (4.23) and the expressions

above. We begin with the two linear transport coefficients

bN = − a2

2M

bM = − a

2M
. (4.25)

6In many instances in this paper, we have used simply N±

i and M±

ij to refer to N
(1)±
i and M

(0)±
ij ; the

difference is higher order in the derivative expansion and so we have not been overly careful to distinguish

between the two. Strictly speaking, we have M±

ij = M
(0)±
ij + M

(1)±
ij + · · · , and it is implicit that we are to

take the lowest order when these quantities are present in derivative expansions.
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As written in (4.24) it may appear that these are only half the coefficients consistent with

the symmetries, but there are only two linear transport coefficients present at this order

in an arbitrary S-invariant fluid. We emphasize that there is no mysterious cancelation

in (4.25), unlike what we found at first order.

The nonlinear coefficients are more difficult to obtain. The calculation is straightfor-

ward but not especially illuminating, so we simply state our result:

bNN
−− =

1

2πMT
+

1

2

∫ ∞

a

dr

(

−2

r
jNj′N +

2

r2
jN jN +

1

2
j′N j′N − 2

r2
jNAN

)

bMN
−− =

3(a4 + M)

4πaM2T
+

∫ ∞

a

dr

(

−jM j′N
r

− jN j′M
r

+ 2
jN jM

r2
+

1

2
j′Nj′M − jNAM + jMAN

r2

)

bMM
−− =

3a2

8πM2T
+

1

2

∫ ∞

a

dr

(

−2

r
jM j′M +

2

r2
jM jM +

1

2
j′M j′M − 2

r2
jMAM

)

bNN
+− =

1

2πT
+

∫ ∞

a

drAN

bNM
−+ =

1

4πaT
+

∫ ∞

a

dr
AN

r

bNM
+− =

1

4πaT
+

∫ ∞

a

drAM

bMM
−+ =

1

8πa2T
+

∫ ∞

a

AM

r
, (4.26)

where the prime notation indicates a derivative with respect to r and we have written the

vector correction to the metric and gauge field at first order (4.5) as

j
(1)
i (r) = jN (r)M+

ij N−
j + jM (r)M+

ij ∂kM
−
jk

∂rA
(1)
i (r) = AN (r)N−

i + AM (r)∂jM
−
ij , (4.27)

with

jN (r) =
4U(r)

a

∫ r

∞
dr′

1 + U ′(a)
aU ′′(a) − a

r′

U2(r)

jM (r) =
2U(r)

a2

∫ r

∞
dr′

1 + 2U ′(a)
aU ′(a) − a2

r2

U2(r)

AN (r) = −ρ2 + B2

U(r)r2
jN − 1

U(r)

AM (r) = −ρ2 + B2

U(r)r2
jM − 1

U(r)r
. (4.28)

Unlike the linear second order transport coefficients, there appear to be fewer coefficients

present in the second order nonlinear sector than are predicted by symmetry. Coefficients

of terms like [K+
ikN

+
k N+

j ]st and [K−
ikN

+
k N+

j ]st are seen to be zero, and it is not hard to

trace through our calculation to see that the cancelations at first order are responsible for

the vanishing of these terms. While it is possible that some (or even all) of these missing

coefficients might be explained through a rigorous analysis of the entropy current at second
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order, we do not yet have an understanding of why some representations of the S-duality

appear to be favored at this order.

In terms of these currents, it can be shown that the remaining constraint equations at

this order reduce to the equations of motion in our fluid (2.1).

5 Conclusion

Let us review what has been achieved. We first considered the fluid dynamics of a general

S-invariant fluid at first order in the derivative expansion, independent of gravity or the

AdS/CFT correspondence. Even at this first nontrivial order there are a large number of

transport coefficients, since we allow for arbitrarily varying energy and charge densities,

and arbitrarily varying background electromagnetic fields. By using the constraints of

symmetry and positive entropy production, we found the most general form of the transport

coefficients, and found that they could be expressed in terms of an arbitrary real function,

whose argument is the single S-invariant dimensionless combination of the fluid variables,

along with one real constant. This result implies many nontrivial relations among the

various transport coefficients. In principle, it would be possible to extend this analysis

out to second or higher order in the derivative expansion, although the number of terms

proliferates rapidly.

We then turned to the gravitational description of fluid dynamics in terms of black

branes in an asymptotically AdS4 geometry. By solving the Einstein-Maxwell equations

order by order in a boundary derivative expansion we were able to compute all transport

coefficients up to second order. At first order our results were in agreement with those

expected from our general fluid analysis, and we obtained the specific forms of the free

function and constant that appeared in that analysis. Interestingly, this yielded vanishing

values for two of the four transport coefficients, working in a basis natural under S-duality.

At second order we obtained new results for both linear and nonlinear transport coefficients.

S-invariance is a property shared by any fluid that has a holographic description

in terms of four dimensional Einstein-Maxwell theory. One can hardly resist wondering

whether such a fluid exists in nature. A signal that one had found such a fluid would be

to verify the relations among transport coefficients that we derived in section 2. An even

more remarkable result would be to find a fluid with vanishing (or small) values for the

two transport coefficients which vanished in our gravitational computation. This would

be a smoking gun for holography, since this vanishing does not appear to be fixed by any

obvious symmetry or consistency condition.
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A S and T operations: bulk versus boundary

In section 2, we referred to the observation of [12] that 4-dimensional electric-magnetic

SL(2, Z) duality in the bulk is mapped to the operations we defined in (2.2) and (2.3). The

purpose of this appendix is to establish this.
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We begin with the S-operation and consider the most general field strength allowed

by our boundary conditions and choice of gauge. Using (3.13), (3.15), and (3.17), we are

restricted to considering an F of the form

F =
ρ

r2
dr ∧ dv + Bdx1 ∧ dx2 + Eidv ∧ dxi +

∑

n

∂MA
(n)
N (r)dxM ∧ dxN , (A.1)

where all of the elements above are assumed to be functions of the boundary coordinates

xµ. Using (3.26) and the boundary conditions we can write this as

F =

(

ρ

r2
+ O

(

1

r3

))

dr ∧ dv

+

(

B + O
(

1

r

))

dxi ∧ dxj

+

(

Ei + O
(

1

r

))

dv ∧ dxi

+

(

−Ei + Ji

r2
+ +O

(

1

r3

))

dr ∧ dxi (A.2)

Given the allowed form for the metric, as outlined in section 3.3, we compute the dual

field strength

⋆ F =

(

B

r2
+ O

(

1

r3

))

dr ∧ dv

+

(

−ρ + O
(

1

r

))

dx1 ∧ dx2

+

(

−ǫijJ
j + O

(

1

r

))

dv ∧ dxi

+

(

ǫij
Ej + Jj

r2
+ +O

(

1

r3

))

dr ∧ dxi . (A.3)

Comparison of (A.2) and (A.3) demonstrates that electric-magnetic duality in the bulk

exchanges the boundary CFT parameters according to (2.2),

ρ → B

B → −ρ

Ei → −ǫijJ
j

J i → −ǫijEj . (A.4)

Turning now to the T operation, we consider adding to the action (3.1) a θ term of

the form

Sθ =
θ

8πκ2
4

∫

ǫMNOP FMNFOP . (A.5)

According to (3.7) this term modifies our definition of the current to

Jµ = r2

(

F rµ +
θ

4π
ǫrµνρFνρ

)

, (A.6)

– 21 –



J
H
E
P
1
0
(
2
0
0
9
)
0
4
7

where a large r limit is implicit. In the bulk, the T operation corresponds to θ → θ + 2π.

In the boundary theory, this corresponds to (2.3),

ρ → ρ + B

B → B

Ei → Ei

J i → J i − ǫijEj . (A.7)

This establishes the relation between the S and T operations in the bulk and boundary.

It also shows the different status of the two operations: S corresponds to a symmetry of

the bulk equations of motion, while T corresponds to a change in the action of the theory.
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